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INTRODUCTION

Thediché, "spaceisthefind frontier”, can be applied to insect population ecology in the same way we
hear it so often from science fiction dramas. Higtorically, studies of insect population biology, have
concentrated on changes through time, but patterns across spatia dimensons remain largely
unexplored. The complexity and difficulty of handling mult-dimensiond data has perennialy hindered
researchersin their quest to understand spatial phenomena. Some studies have attempted to quantify
spatid variaion in populations with the use of indices of digperson (98) but these methods often fail to
distinguish among different spatid patterns (50,34,81). The mgor impediments to research on spatid
processes in insect ecology has thus been the lack of adequate andytica and data management tools.
Recent development of two technologies has opened up new avenues for analyzing spatia patternsin
insect populations: (a) geographicd information systems (GIS) and (b) geostatistics.

A GlSisaset of computer programs thet collect, store, retrieve, transform, display and analyze
spatia data (9). Georeferenced data, such asinsect densities, crop type, or soils, can be incorporated
inaGISto produce map layersor "coverages'. A map layer, generaly composed of only one type of
data, isthus consdered to have a"theme'. Many of these themes that have asmilar spatia extent can
be combined to form afull GIS database. The GIS serves asatool for analyzing interactions among
and within the various spatidly referenced data themes. Managing and andlyzing large spatiad
databases would be impossible without this type of software.

While the advent of GIS has dlowed entomologists to compile and manipulate spatialy referenced
data, characterization and modeling of spatid patternsis il difficult without an adequate set of
datigtica tools. Geodatistics are such toals; they are afamily of satistics that describe correlations
through space and/or time. Geodtatistica procedures are used for: 1) quantifying and modeling spatia
correlation at a spectrum of spatia scaes through the use of semi-variograms, correlograms and
covariance functions, and 2) interpolating between (and extrgpolating beyond) sample points via
kriging and related procedures. These methods have been widdy used in applied petroleum and
minera geology; geodtatistics have often provided improved predictions of the location of minerd and
petroleum resources from limited data. While most past geostatistica applications have focused on
geologica problems, there isreason to bdieve that geodtatistics will have broad applications to
ecologica problems (79).

Mogt of the published gpplications of GIS and geodtatigtics to insect problems are from the fields
of forest and rangeland entomology; relaively few gpplications have been developed in agriculturd
sysems.  This phenomenon can be explained mogt eesily by the geographic scde of management:
forests and rangelands are usualy managed as units covering 100 to 10,000 ha of spatidly
heterogeneous landscapes, but agricultural management typically operates on fields of only 10 to 100
ha of much more uniform compostion (42, 9). We expect that GIS and geostatistics will become
increasingly important in the management of agricultural and medical insect pests as area-wide pest
management becomes more common in these systems.
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GEOGRAPHIC INFORMATION SYSTEMS (GIS)

A GISisacomputer system capable of assembling, storing, manipulating, and displaying
geographicaly referenced information. This broad definition includes arange of software functionaity
(13): a one end are mapping, image processing, digitizing, and computer aided design (CAD)
software, which are designed for specific tasks such as the input, manipulation or display of spatialy
referenced data; at the other end of the spectrum is integrative GIS software. To be considered atrue
GIS, asystem must be capable of all of the following: spatid datainput, storage and retrieva of
Spatia data, patia manipulatiors, and spatia data reporting (61,17). Below, wewill clarify therole
of these various sub-functions

Sorage And Retrieval

An essentid feature of any GISisthe ability to digitaly represent spatid/map data. Any 2-dimensond
spatia object can be classfied as either apoint, line, or polygon. The gpproach taken to the problem
of spatia representation varies among various GIS software packages (71). Many systems represent
spatid datausing raster images. Theseimages are Smply matrices of congtant-sized cells, where eech
cdl hasavaue. Groups of adjacent cdls with identical vaues define a spatia object (Figure 1a).
Another gpproach to spatid representation is the use of vectors. Under this approach, each object is
represented by a series of vectors. A point is represented by a single vector of null length, aline or
curveis represented by a series of connected vectors, and a polygon is represented by a series of
connected vectors that enclose a geographic area (Figure 1b). An advantage of the vector approach
is reduced data storage need; for example, the only data that must be stored to represent a polygon
are the coordinates of the vertices. However, file compression methods often alow raster data
representations to require no more file space than vector representations.

Indl true GISs, there are data attributes associated with each spatial object. Examples of
attribute data are the name of ariver, popuation densty of a county, or soil type of aparcd. Itisnot
uncommon for many atributes to be associated with a single spatia object. The mechanism used for
storing attribute data varies among different software; some systems use "flat” ASCI| files, while others
use complex relationd databases.

Data Input

An obvious prerequisite to any spatid andyssisthe acquidtion of spatialy referenced data. Thistype
of data may include paper maps, remotdy sensed data, digita line graphs or field-acquired point data.
Map data are typicdly input usng adigitizer or scanner. A digitizer is an dectromagnetic device that
converts movements of a pointer intox and y coordinates that are used in the GIS to define the spatia
position of points, lines, and polygons. A scanner is adevice that performs araster (grid) scan of the
input medium and senses the light reflectance at each ragter cell. Thisinformation is encoded in the
computer as aragter image of the source medium. The spatia resolution of scanning devicestypicaly
ranges from 30 to 600 dots per inch. Often the source of spatial data may not be a paper map, but
may adready be in some sort of eectronic medium. For example, remotely sensed data often exigs as



LIEBHOLD, ROSS & KEMP GIS & GEOSTATISTICS 3

multi-spectra representations using a raster system. Another example is dectronicaly published
government data sources, generally referred to as digita line graphs (DL G); these include map data of
elevation, political boundaries, highways, land use, and s0ils (24,102,103). Most GISs have utilities
for importing data from a variety of data formats including product- specific GI S formats, multi- spectral
formats, and various other raster and vector formats.

Spatial Manipulations

The functiona utility of the GIS comes from its ability to manipulate spatidly referenced data

Probably the most important manipulation, in terms of producing useful results, isthe overlay process.
Under this process, two or more map layers are combined, using a common georeferencing system, to
produce a new map that is acombination of the attributes of theseimages. For example, one layer
can be used to mask out portions of a second layer. 1n another example, one may caculate a new
coverage that isthe arithmetic sum of a specific attribute in a series of maps (e.g. tota years of
defoliation). When using overlays or other manipulations, care must way's be taken to recognize that
spatia and attribute error can be magnified as aresult of the manipulation (10,73).

There are avariety of gpatid measurement techniques that provide for andyss of map layers.
These measurements include distances from a specific object, the area of a polygon, the length of a
line, and the perimeter of apolygon. There are many permutations of these measurements. For
example, severd GIS's can be used to measure distances as a cost, where cost is computed as
distance weighted by a function of an attribute in another coverage.

Another important set of functionsis manipulation of the X, y coordinates for a given map layer.
Thisincludes "rubber-shegting” in which the origina coverage is distorted to coincide with
geo-reference points of another coverage. Thisfunction is useful when overlaying two or more map
layers which may originate from different map projections (87). Most GIS's have specific mechanisms
that facilitate the conversion of a coverage among specific map projections (e.g. universal transverse
mercator to azmutha equidistant). This is often important because different projections have different
qudities that may be useful for particular types of analyses of asingle coverage. For example, an
equal-distant projection produces less error in distance measurements but more error in area
measurements than an equa-area projection. Ladtly, dl GISs provide some mechanism for
manipulating the spatid scae of an coverage. Often, an image provides too much spatid detall and a
map generdization function is used to trandate that coverage to asmdler scde.

Data Reporting

Output from a GIS may be in the form of a graphica image or tabular ligting. An example of atabular
lising might be alist of dl polygons and their attributes, or it could be a mean of polygon attributes,
weighted by their area. There are avariety of modes of graphica output. Perhaps the most common
are 2-dimensiona map representations. For example, after overlaying hydrology, road, and
vegetation coverages, it may be useful to view amap of the combined image. Map representations
aretypicaly viewed directly on the syssem monitor, or paper copies may be generated using a variety
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of printers and plotters. Continuous data are often represented using an orthogond projection or
contours.

Entomological Applications

GIS software is described most correctly as "enabling technology”. A GIS provides insect ecologists
and pest managers with the capabilities to dore, retrieve, process, and display spatialy referenced
data. Itislikdy that entomologistswill rapidly embrace emerging GIS technology because so many
guestions from insect ecology to pest management have a spatid component. Whether studying the
patch dynamics of host and herbivore or predicting regiona hazard, GIS technology can provide
entomol ogists with the ability to answer questions that frustrated their predecessors. At present it is
possible to identify two generd areas where a GIS has been used in applied insect ecology:
characterization of habitat susceptibility to outbreaks and compilation of census data.

Probably the mgor use of GIS technology in applied insect ecology has been for reating insect
outbreaks to biological and physiographic features of the landscape (105,8). For example, Shepherd
et d. (85) digitized historical maps of defoliation caused by the Douglas-fir tussock moth in British
Columbia from 1924-86, and overlaid these images to obtain a map of defoliation frequency. This
outbreak frequency map was then overlaid with forest type and biogeoclimatic maps to determine how
forest type and climate were related to outbreak frequency. Their characterization of Sites most prone
to outbreaks can be used to predict where outbreaks will occur inthe future. Inasmilar sudy,
Johnson used a GI'S to examine the relationship between historical grasshopper outbresks and soil
characterigtics (40) and between westher and survey counts (41). From these geographicaly
referenced data, Johnson (1989b) found that grasshopper abundance in Alberta was related to sl
type, but not to soil texture. Furthermore, a Significant association was found between rainfdl levels
and grasshopper densities; populations tended to decline in areas recelving above- average rainfall
(42).

In any of these types of studies, the scde of the origina data determines the scale at which
projections of risk can be made. For example, Liebhold et a. (58) used aerid sketch maps of
historica gypsy moth defoliation to determine associations with specific forest types and elevation
classes. The defoliation and forest type datawere only rdiable at 2 x 2 km raster resolution and
consequently any use of these habitat classifications was limited to that scale. Sometimes, other
methods can be used to improve the spatia resolutionof data. Twery et d. (101) used eevation and
aspect to predict forest type and consequential susceptibility to gypsy moth defoliation at a30 m
resolution for areas where actud habitat data was not available at that resolution. Thereisincreasing
awareness of the importance of spatid scalein the analysis of ecologicd systems (3,1,65).
Parameters and processes important at one scale are frequently not important or predictive a another
scae(63,1,54). Care should be taken when aggregating spatia data since bias and spurious
relationships can be generated as data are reduced to lower resolution (73).

Future efforts to characterize habitat susceptibility will probably use remotely sensed data
extengvely because of their high spatia resolution and its availability in virtualy every portion of the
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globe (for a complete review of remote sensing in entomology, see Riley [78]). For example,
Bryceson (7) used Landsat multispectra data to identify areasin New South Waes, Audraia, which
were likely to have egg beds of the Audrdian plague locust. Through the use of anormdlized
difference vegetation index (NDV1) and maximum-likelihood classification, Bryceson (7) was able to
predict the location of nymphal bands from changesin NDV| that resulted from rains during March
(nymphal bands tend to be associated with "green” areas that result from rain). Similar "greenness
mapping" studies have been conducted in Africafor grasshoppers and locusts (97). In addition to
illugtrating the gpparent ecologica association between nympha bands of acrididsin Audtrdia and
Sahdian Africaand changesin NDVI, studies of Bryceson (7,8) and Tappan et d. (97) haveimmense
practica utility because they produce red-time estimates of the location and extent of potentid pest
problems. Through such methods, it has been possible to improve the efficiency of sampling for
prediction of outbreaks aswell as reduce the guess-work involved with planning and execution of pest
management programs.

The second mgjor use of GIS technology has been for compilation and andlysis of insect census
data An example of thistype of gpplication in an agriculturd system is the manipulation and display of
boll weevil trap countsin USDA eradication activities (106). Severd examples of GIS-based
monitoring systems can be found in gypsy moth management programs. Gage et d. (27) used counts
of mae gypsy moths from traps located throughout Michigan to develop interpolated maps of trap
capture using a distance-weighting agorithm. These counts were then used to generate maps of
predicted defoliation using alinear mode that was developed from historica data. These defoliation
prediction maps could then be used to delineste areas where suppression activities were warranted.
Spears et d. (94) and Ravlin et d. (75) used a GIS to interpolate gypsy moth trap counts and egg
mass dengities in an integrated pest management demonstration program in the centra Appaachians.
They showed how map compilations of these data are useful for documenting the range expansion of
thisinsect and planning suppression activities. In yet another gypsy moth study, Liebhold et d. (57)
used a GISto andyze the hitorica expansion of the range of the gypsy moth asit relatesto
geographicd varidion in climate. From this analyss they developed amodd that forecasts the future
spread into currently uninfested aress.

The compilation and interpretation of spatidly referenced insect and habitat data is a complex
process, if for no other reason than the large size (in megabytes) of GIS coverages. Although GIS
software is designed to successfully handle this complexity, these systems are often not easy to use. In
order to make GIS's more accessible to applied problems, they are increasingly being linked as a part
of larger decison support systems (DSS). These systemstypicaly use a GIS to manage habitat,
geophysical, political, and census data; the DSS uses these geo-referenced data, dong with other
types of data as input to mathematical models and rule bases to produce useful abstractions or
recommendations (72). These outputs might be maps of high-damage hazard or even maps of
proposed control areas. DSSsthat utilize GISs exis, or are under development, for the jack pine
budworm (60), the southern pine beetle (11), the gypsy moth (25), and rangeland grasshoppers (4).
Coulson et d. (12) used the term "intelligent geographica information system” (IGIS) to describe
systems that use a GIS and rule based modd s to integrate landscape data and knowledge from a
diversty of scientific disciplines.
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GEOSTATISTICS

Insect populations are typicaly spatidly heterogeneous in their densities. This heterogeneity is often of
considerable importance to the development of sampling procedures (93), to the understanding of
predator-prey reaionships (29,5), to the understanding of intraspecific competition (37), and in the
development of rationa pest management Strategies (33).

For the above reasons, agreat ded of effort has been invested in characterizing spatia patterns of
insect dengities. Mogt earlier Sudies have attempted to described spatia patterns with the use of
dispersion indices such as 2/ x (18), coefficients of Taylor's Power Law (99), 14 (64), Lloyd's
Patchiness Index (59), and Iwao's patchiness regression coefficients (38). Theseindicesfocuson
the frequency distribution of samples (most quantify the relationship of the sample variance to the
mean) but ignore the spatid location of samples. This property produces certain undesirable effects.
(a) theseindices often fall to differentiate among different spatid petterns (50,34) and (a) ther
descriptions of spatid pattern are highly dependent on the size of sample units (81). What is required
isatool that uses both value and location Smultaneoudy to quantify spatia pattern.

One school of spatid analysisthat takes this approach is geodtatistics. Geodtatisticsis a branch of
gpplied atistics that concentrates on the description of spatia patterns and estimating vaues at
unsampled locations. The prefix "geo-" derives from the geologica disciplines that provided the main
theoretica and application developments over the past two decades. Nevertheess, many of the
precursors to modern geostatistics can be traced back over 100 years from such diverse disciplines as
forestry, economics, and meteorology (80).

A wdl-written, clear, introductory text on geodtatisticsis Isagks and Srivastava (36). Davis(21)
and Hohn (31) are dso clear texts that discuss geostatistics with geologica gpplications. More formd
texts, ones that require understanding of calculus and matrix adgebra and use mining examples
exclusvey, are Journd and Huijbregts (48), David (19,20) and Rendu (77). Ross et d. (80) and
Legendre & Fortin (53) may be consulted for more thorough treatment of the use of geodtatitical
toolsfor interpreting ecologicd spatid patterns.

Modeling Spatial Variability

Geodtatistics quantify and modd spatial and tempord corrdation. Underlying this gpproach is the
expectation that, on average, samples close together are vaued more smilarly than those that are
farther gpart. This makesintuitive sense,

Let z(X) represent the value of avariable at location x and let z(x+ h) represent the vaue of the
same variable some h distance, or lag, away. Note that in the temporad domain h represents some unit
of time. For the sake of brevity, henceforth examples presented will be spatid problems even though
these tools can be applied to tempora and spatio-tempord problems. Typicaly we have more than
just two samples in a data set, so consider the set of al possible combinations of samplesthat are
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separated by h. One quick way to express the smilarity or dissmilarity between the paired vauesis
toplotthemina z(x) vs. z(x+h) scattergram. Thisplot isknown asan h-scattergram. If the
difference between dl the z(x) and zZx+h) issmdl, then the scatter of pointswill be closeto the 45
° line and the variable is described as "autocorrelated”. Alternatively, the larger the difference between
the pairs, the more diffuse will be the scatter of points around the 45° or z(x) = z(x+h) line. When h
issmall, the scatter of pointswill, on average, be "tighter”; when h islarge, the scatter istypicaly more
diffuse

The"tightness' or "diffuseness’ of the cloud of points about the 45 line may be thought of asther
"moment of inertid’ about theline. If xj and y; arethe coordinatesfor al i=1 to N pointsinan
h- scattergram, then the moment of inertiafor al pointsis defined:

N
Moment of inertia :%Z(Xi Ay )? 1.
1= §
(47). In other words, the vaue of the moment of inertia summarizes the spread of the cloud inan h-
scattergram.

The h-scattergrams can be useful models of the degree of amilarity or dissmilarity between
samples separated by a common distance, but they are not very practical. Because, too many h
scattergrams would be required to adequately characterize the spatid smilarity for al samplesand for
al h, ameaningful summary of these h-scattergramsisrequired. Intimately related to the moment of
inertiais one of the mogt familiar toolsin geodtdigtics the "semi-variogram” or smply the "variogram.”
A vaiogram summarizes dl h-scattergrams for dl possible pairings of datafor dl sgnificant h:

1 N(h)
Weh) B [ () f2(x, ()] 2
2N(h) ia
where v (h) isthe edimated variogram vaue for lag hand N(h) isthe number of pairs of points

separated by h. Variograms plot the \&c(h) asafunction of distance h (Figure 2). The variogram

vaues can be computed either as averages over dl directions, in which case the lag measure is scdlar,
or specific to a particular direction, in which case the lag measure is a vector.

Two "rules of thumb™" apply to variogram congtruction (48). Firg, it isonly appropriate to plot
variogram vaues out to about haf the width of the sampling space in any direction. Thisis because
the variogram should be representative of the whole sampling space. At distances grester than one
haf the total distance, only the pairs of samples at the boundary of the sampling Space are compared.
Second, al variogram values must be represented by at least 30-50 pairs of samplesto impart
minimum credibility. The grester the number of pairs, the greater the satisticad religbility in each
distance class.

Typicaly, when variogram vaues are plotted for dl appropriate h, the vaues are smdl for low
vauesof h, then they increase with increasing distance, and then usudly leve off or become congtant
after some distance (Figure 2). These features are known asthe "structure” in avariogram and they
reflect the average degree of amilarity or dissmilarity between samples. Congtant variogram vaues
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imply that the variance between vaues does not change with distance. Small variogram vaues a short
lags are indicative of datathat are autocorrelated or spatialy continuous. Large vaues, on the other
hand, indicate that the paired samples are dissmilar, and more spatialy discontinuous.

If avariogram displays aleveing-off behavior, then the variogram vaue at which the plotted points
levd off isknown asthe "sll" (Figure 2). Thevdue of the il is usudly equivaent to the traditiona
sample variance. The distance & which the variogram vaues leve off is known asthe "range” The
range designates the average distance within which the samples remain corrdated spetidly.
Vaiogramstha do not demondrate aleveling off imply that the range is beyond the maximum
appropriate distance represented.

Notice in Eq. 2 that, strictly spesking, vy =0 when h = 0 since there is no variability between a
sample and itsdf. In practice, however, when avariogram's scatter of points are extrapolated to lag
zero, they often appear to intercept the ordinate at a value that is greater than zero. The variogram
vaue a which the mode appears to intercept the ordinate is known asthe "nugget.” Theterm
"nugget” was coined by gold mining engineers who would find nuggets of gold gpart from the spatialy
continuous seams of ore. The spatid characterigtics of these gold nuggets impart unexplained
vaiability in the modding of the gold seams.

A nugget represerts two, often co-occurring, sources of variability. One source derives from
spatid variability at ascae smdler than the minimum lag distance, and hence it cannot be modeled
with the present sampling scheme. The other genesis of anugget is experimenta error which is
sometimes referred to as the "human nugget.” Interpretations made from variograms depend on the
sze of the nugget because the difference between the nugget and the il (if there is one) representsthe
proportion of the totd sample variance that can be modeled as spatid variability.

Variograms sometimes gppear horizontal. These models have a complete lack of structure and
ther values are nearly identical to the sample variance over dl h. In geostatistics these models are
known as "pure nugget” variograms. Pure nugget variograms represent an absence of spatid
dependence at the scale sampled. In thisingtance, the sample variance adequately summarizes the
datads variahility.

For entomologica and environmenta variables the smilarity or dissmilarity between locationsis
rarely uniform with direction. For instance, one might expect, a priori, that a natura population of
some insect would more often display different densties with different directions due to migration
patterns or some environmenta cue. When variograms computed for specific directions show
different behaviors, the datais described as "anisotropic.”

Generdly, there are two types of anisotropy: geometric and zona. Geometric anisotropy is
indicated by directiond variograms that have different ranges. A longer range in a direction means that
the vaues of the property of interest are more continuous in that direction than for adirection with a
shorter range. Zond anisotropy isindicated by directiona variogramsthat have different slls. Zond
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anisotropy means that the magnitude of spatid variation changes with direction. Often, both forms of
anisotropy are evident in directiona variograms. Thus, the researcher may need to compute many
directional variogramsin order to uncover the type and specific direction of any anisotropy.

Because the variogram computes the average squared difference between samples separated by
acommon lag and oriented in acommon direction, it is very sendtiveto outlier data. A few
particularly large or small vaues can grestly affect the behavior of variograms. Normdly, variograms
computed from data that contain especidly large- and/or smdl-vaued samples will be"noisy." That is,
ingead of smoothly risng with increasing h, the variograms will be erratic with sharp increases and
decreases. Variogram "noise’ due to data outliers can even completely mask structure and produce a
pure nugget effect.

The h-scattergrams are effective tools for discovering outliers because these data will plot away
fromthe"cloud’. However, searching for outlierswith h-scattergrams can betedious. Oncea
suspected outlier is discovered, it may be removed from variogram analysis only if thereisasuitable
judtification (80). Asan dternative, many "resstant” variogram measures (i.e., geodtatistica tools that
are "resgant” to the influence of unusudly large and smal data) and outlier detection methods have
been proposed (32,30,52,23). Some of the more popular resistant variogram measures are the
median absolute deviation estimator (45), generalized distance measures (47), median polish (14,15),
the Cressie-Hawkins estimator (16), and Omre's estimator (69).

Variograms aso can provide alimited view of spatid variability when the data contain trends. A
trend may be thought of as petia pattern larger than the extant sampling scheme's capability to fully
detect. Trends manifest themsalves two ways. Sometimes loca mean vaues change over the
sampling gpace while other timesit isthe locad variances that change. Frequently, both local means
and loca variances change as a function of location within the sampling space. The ussfulness of a
variogram stems primarily from its ability to modd lagto-lag spatid continuity. If thereisatrend, both
the underlying lag-to-lag variahility and the trend variability will be modeled in avariogram.

In geodtatigtics there are two additiond tools used for quantifying spatid varigbility that remove
mean and variance trend effects so that the underlying lag-to-lag variability can be articulated. These
two tools, spatid covariance and lag correlation, filter changesin the loca mean and variance and
specify the strength of the underlying spatid reationship. Like the variogram, these tools summarize
the h-scattergrams computed for various lag distances. The "nontergodic” or Spatial covariance,

C(h) isestimated:
N(h)

c(h) H—N(lh) Wl x,) o, ] z(x =h)afm 1 3.
iH

(35). Asbefore, z(x;) and z(x;+h) are two data points separated by the vector h. Datum z(x) isthe
tail and z(x;+h) isthe head of the vector, N(h) are the total number of data pairs separated by lag h,
and m, and m, . are the mean of the points that correspond to the tail and head of the vector,
resoectively. The forma definition of "ergodicity” is rather involved (see Olea [68]), but the main idea
isthat the traditiond ergodic covariance consders m, = m, , =m. Differences between the head
and tail means are thus accounted in the non-ergodic covariance.
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The second toal, lag correlation, =(h), filters both lag means and lag variances. It isrelated to the
non-ergodic covariance and is Smilarly esimated:

N(h) ‘
oty gL K W) i T Cy
lil(h) SmSh
o 4,
Sﬂ‘h%ﬂ

(95) where s, and s, |, are the standard deviations of the tail and heed values of the vector,
respectively. The corrdogram can vary only from +1 to - 1 depending upon whether the correlation
between locationsis postive or negative.

The non-ergodic, or spatia, covariance and correlation values can be plotted as afunction of lag
distance like avariogram. Note, however, that unlike the variogram which usualy contains smal
vaues at short h and large values at larger h, the non-ergodic tools vaues are large for smal h and
amdl for large h. Or, to put it ancther way, they are "flipped" images of the variogram.

The true variogram, covariance, and corrdogram are dl related. 1f the populationmean and
variance are constant over the sampling space (my, =m ., =mand s2.,=s2,;, =s2 i.e, thereisno
trend) then:

Yih) e % @C(h)
CXh) FC(h)/+ *
16 h) EYh) / * 5.
For ease of comparison, these relations permit us to re-express the covariance and corrdlogramsin
variogram form. When the lag covariance val ues are subtracted from the sample variance, the
resulting plot is equivaent, though not identical, to the variogram. When the corrdlogram is subtracted
from 1, then the resulting plot isin the form of avariogram.

The non-ergodic tools should be computed concurrently with the variogram and then dl three
should be compared. Differences between the variogram and covariance signa changesin the loca
meens. Plottingm_,, and m, ,, asafunction of h provides adescription of the magnitude and direction
of local mean changes. Differences between the covariance and correlogram indicate varying local
variances. Plotsof s, and s, |, versus h model the nature of the variance changes.

In addition to furnishing an gppreciaion for both lag-to-lag and locd trends, the non-ergodic tools
should be computed aong with the variogram because trends can completely obscure structure or
fasdy impart it. Isasks and Srivastava (35) provide an example of agold deposit that has anoisy,
near pure nugget variogram, but it displays awell-structured norergodic covariance. By appraising
only the variogram, one may fasdy conclude that there is no spatial dependence. Ross et d. (80), on
the other hand, show an example of a structured variogram with a near-zero nugget, but it had a pure
nugget norergodic covariance. Inthis case, interpreting spatial dependence using only the variogram
would lead to the false conclusion that thereis a smdl scae, lagto-lag spatia dependence. Knowing
that an organiam's spatid pattern occurs on a smdl and/or large scale and having some idea or the
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relative strength of these patterns can be avauable aid in understanding the digtribution of an insect.
Moreover, as we will see shortly, the scale of the spatid pattern will influence strongly the success of
geodtatidtical tools that provide estimates for unsampled locations.

Some entomologica properties are naturally nomina variables. The presence or absence of an
insect and genotype are two examples. Variograms, covariances, and correlograms can be computed
for nominal variables after coding presence and absence as"0"'sand "1"s. These models are known
asindicator variograms, covariances, or correlograms and are interpreted the same way asthey are
for continuous varigbles (44,31).

Indicators may aso be applied to continuous variables. For instance, say aresearcher would like
to specify the spatial dependence of a particular Size, age, or dersity class in an entomologicd data
. Indicator coding may be performed for any subset desired. The indicator transformed variable,
i(x; k) isthus afunction of both location, x , and cutoff, K. In the Smplest nomind case, the cutoff
defines a single threshold for a particular subset:

K 1if z(x) Ok
k) B i 7% @k

In addition to characterizing nomind ecologica variables, indicators may aso be used to discretize
a continuous variable's cumulative digtribution function (cdf) into a series of cutoffs (44,31). These
cutoffs may be defined according to some natural or predefined proportions like particular size and
age classes, or they may be chosen arbitrarily (eg. a each decile). For each subset or cutoff aong the
cdf, indicator transforms are made of the data according to Eq. 6. The resulting array of indicator
variograms, covariances, and correlograms provides the entomologist with unique models of the
spatia dependence for the whole spectrum of an organism's attribute. The greeter the number of
cutoffs, the more refined will be the discretized cdf. Ultimatdly, it is the number of samples availableto
define any one class or subset that will limit this non-parametric approach. For that reason, indicator
transforms should rarely be performed on cutoffs smdler than the first or larger than the ninth deciles.

Geodatigtica tools are dso available for modding the spatia covariation between varigbles. This
capability can be one of the most useful and informative in geodtaigtics. These methods, cdled cross-
variograms, cross- covariances, and cross-correlograms, are Smply extensions of the variogram (EQ.
2), the covariance (Eq. 3), and the correlogram (Eq. 4). Lack of space prevents an examination of
these toals, but Isaaks and Srivastava (36) and Ross et d. (80) should be consulted for their
theoretica development and interpretation using practica examples.

Geostatistical Estimation Tools

Geogatigtics offer avariety of methods that provide estimates for unsampled locations. Known
generdly as"kriging" techniques, they estimate values by taking aweighted linear average of available
samples, not unlike multiple linear regresson. Theterm "kriging" was named by Georges Matheron
(62) in honor of Danie Krige who firg formulated and implemented this form of interpolation in 1951.
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Like traditiond point interpolation methods (e.g., inverse distance weighting, triangulation, and
loca sample means), kriging can provide an estimate for a pecific location. And like treditiona aredl
interpolation methods (e.g., polygond weighting and cdll declustering), kriging can estimate an average
vaue over an area. Often the traditiona methods are as accurate and |ess time-consuming then
kriging, so the researcher should first consider these other methods (36). However, certain
characteridtics of kriging digtinguish it from these other methods.

Firgt, kriging can provide an estimate that is elther larger or smaler than any of the sample vaues.
The traditiona techniques are restricted to the range of sample vaues. Second, whereas the
traditiona methods use Eudlidean distance to weight available samples, kriging takes advantage of
both distance and geometry (i.e., the anisotropic relations) among samples. Third, unlike traditiona
methods, kriging is designed to minimize the variance of the expected error. The expected error isthe
difference between the estimate and the true value. Of course, the true value is never actudly known,
30 kriging applies a conceptud, probabiligtic random function mode of the true values (66,36).
Findly, kriging can incorporate dternate forms of information into the andysis. For example, say an
entomologigt isinterested in estimating the dengity of an insect in unsampled areas, and it is known that
s0il moigure affects the digtribution of the organism. Kriging can use the spatia dependence inherent
in both properties as well astheir joint spatiad dependence to provide estimates that are more accurate
than when using only one or the other of the Sngle varigbles.

The basc idea of kriging is Smply an extension of the notion of spatia dependence discussed
earlier; on average, samples close together are more similarly vaued than those that are farther apart.
Suppose we want to estimate the value of a property at some unsampled location and we do have
some samplesin the vicinity. Directiona models (variograms, covariances, or correlograms) provide
uswith ameasure of the strength of correlation for different directions and for different distances.
Using this information, kriging weights the known samples to provide aweighted linear estimate for the
unsampled location.

The geodtatigticd interpolation procedure known as "ordinary kriging” (OK) is essentidly identical
to multiple linear regression with a couple of important twids. In classca multiple linear regresson the
dependent and independent variables represent different variables usualy measured at the same
location in gpace or time. Thus, the matrices used to solve the system of Smultaneous equationsis
inferred only once from the data. In geogtatistics, dependent and independent variables represent the
same property, only now measured at different locations, and we wish to estimate (i.e., interpolate)
vaues a unsampled locations.

For example, if 7 (X,) isthevaueto be estimated at location X, z(x;) arethe sampled vaues
at their respective locations, and | j are the weights to be given to each sampled vaue, then an OK
estimate may be expressed as.

N
Z (%) HliZ @z(x,) 7.
i
which isasmple modification of amultiple linear regression formulaion.
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In multiple linear regression, aleast- squares variance is minimized with respect to each
independent variable's coefficient or weight. Kriging has a parale requirement which seeksto insure
that over the estimation space the expected vaue of the estimates will equa the expected vaue of the
true (i.e., the random function) values. In other words, we expect that our estimates will be unbiased.
Unbiasedness requires that, on average, the difference between our estimates and the true, but
unknown, values will be zero:

HZ(x) &2 (x)] &0 8.
To insure unbiasedness, we regtrict the sum of weights to equd one:
Ze =l 9.

iH
Jugt like multiple linear regression, in ordinary kriging we wish to find the weights, | ; , while
smultaneoudy minimizing the quantity [Z(x) - Z*(x)] for al estimated points and making sure they
sum to unity. Anaogous to the least- squares variance in regression, kriging minimizes the estimation
variance, s2,,, whichisthe variance of the error:

*2 HVariance[ Z"(x) ﬂZ(x)] 10.
The geodtatistical way to do dl thisisto infer the "true" vaue from an empirical mode of the existing
spatia continuity or degree of spatial dependence with distance and direction. These are the
variogram, covariance, or correlogram models. There are severa forms of linear and nonlinear
models that can be used to fit observed variogram valuesin order to obtain ¢(h) for dl lags (36). We
implicitly decide that the model is accurate over the whole estimation area. This so cdlled " sationarity
hypothesis' isimportant in geostatigtica estimation because if it isin error, the kriging estimates will
aso beinerror.

Kriging uses matrix adgebrato solve a set of Smultaneous partid differentid equtions that
minimize the error variance (Eq. 10) with respect to each weight, | ; , while ensuring unbiasedness
(Eg. 9). To accomplish this task, matrices are built from the values of a pogtive definite model thet is
fit to the experimental variogram (or covariance or correlogram) points. One matrix, C, itemizes dl of
the data-to-data values and thus captures data spatial continuity and accounts for any data redundancy
or clugtering. The other matrix is avector, D, of dl data-to-estimationtlocation modd vaues, this
captures the distances to measured points. The kriging system of equationsisthen solved: C-1xD =
W where W isthe vector of sought-after weights | ;.

Entomologica phenomena are frequently multivariate and the primary varidble of interest is
expendve and/or time-consuming to sample. A geodtatistical interpolation technique known as " co-
kriging" offers away to minimize the number of samples taken of the primary varidble by sampling a
secondary covariate more intensively, onethat is easier or less expensive to sample (36). Co-kriging
isjust amodification of OK (see Eq. 7) formulation. A co-kriging esimate isalinear combination of
both the primary and secondary data. I1n co-kriging, variograms (or covariances or correlograms)
computed on each variable, aswdll as cross-variograms (or cross-covariances or Cross-
correlograms), are used to specify the spatia dependence relationships. One advantage of co-kriging
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isthat snce more informetion is being employed in the estimation, the minimized variance is usudly
smadller than for OK.

Indicator transforms were introduced above as serving two variography functions. Onewas a
means of encoding nomina variables so that their spatid dependence might be modeled. The other
function was to discretize a continuous variable's cumulative ditribution function (cdf) and then
computing models of the spatial dependence at each cutoff. A geogtatistica interpolation method
known as "indicator kriging" (IK) can be used to perform estimation on these indicator variables
(46,47). 1K issmply another modification of the kriging concept: it is OK performed on the indicator
transformed data.

OK and co-kriging provide a specific esimated vaue for alocation. In the nomind varigble case
IK provides an estimate of the probability that the location's vaue is either a"0" or "1." In the case of
acontinuous variable's discretized cdf, IK estimates the probability that the location's vaue isless than
or equa to the cutoff value. These results are possible owing to a powerful and smple property of
indicator data: the expected value of an indicator-coded data set is identical to the probability that the
random varigble it representsis less than or equa to the vaue of the cutoff value,

After performing IK at each cutoff, we have multiple estimates of the probability thet alocationis
greeter than various cutoff values. These vaues define a discretized probability dendty function for
that location. Moreover, the probability densty function is conditiona to the available sample vaues.
Once inter-cutoff distribution assumptions are made, the conditiona probability associated with any
cutoff can be assessed. Also, the probabilities may be mapped for the entire sampling space.

Indictor kriging is but one of many means of estimating the conditiond probability dengty function
for alocation. Other methods include, but are not limited to: lognorma kriging, multi- Gaussan kriging,
and digunctive kriging (47,22). A recent "twig" on the kriging theme is known as conditiona or
stochastic amulation (43,22). Conditiona simulation goes a step further than kriging methods by
generating multiple equaly probable estimates that are conditiond to the samples. These multiple
estimates characterize jointly the certainty or uncertainty in the value for alocation. Unlike kriging
methods, conditional smulations provide the opportunity to estimate the joint probability dengty
function between any two or more locations. This alows for measuring a phenomenon's continuity
over aregion.

Applications In Entomology

The gpplication of geodtatisticd methods for quantifying spatid patterns in insect count detais
relaively new and there are only afew published gpplications. Smal scae studies (Ilessthan 500 m
total ared) in both agriculturd (82,83) and forest (56) systemsindicate that locdized discontinuity (as
messured by the nugget effect) istypicaly high and some data indicate a pure nugget effect. This high
localized discontinuity may be due to either sampling error or it may reflect spatial dependence that
occurs & a spatid scae amdler than that sampled in the data. The ubiquity of this phenomenon in
insect data probably reflects phenomenain which there exist aggregations at a variety of spatial scaes.
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Liebhold et d. (56), used variograms of data from avariety of spatiad scaesto demondrate that gypsy
moth egg masses are aggregated at scales ranging from 25 m to 50 km. Studies of rangeland
grasshoppers (41,39,51) indicate substantia spatial dependence a distances ranging from 1- 100 km
though the magnitude and range of this dependence varies consderably among regions and years. The
exisence of these vast ranges of patial dependence illustrates the value of the geodtatistical approach
in that it provides a mechanism for quantifying spatid dependence over arange of scaes, other
procedures that use asingleindex, such asthefracta dimension (96) or dispersion indices (98), do

not quantify spatia dependence at multiple scales.

Comparisons among variograms calculated from insect count data taken at different times can be
useful for investigation of effects of dispersion and mortality on spatia patterns of insect abundance.
Schotzko and O'K eeffe (82) used variograms to compare the spatia dependence in within-fied
Lygus hesperus counts and found that early - season counts were generally more clumped than
mid-season samples. They hypothesized that early - season aggregations may be caused by
aggregetion for mating and that mid- season populations are more uniformly distributed because of
pre-ovipostiond dispersa. Borth and Huber (6) found very different results when they followed
within-fidd variaion in dengties of the pink bollworm, Pectinophora gossypiella, during asngle
growing season. They found no detectable spatia structure in the parental generation, but increased
spatial dependence in the F; and F, generations; this change was atributed to the expansion of
populations into unoccupied space. Setzer (84), in aunique study, used correlograms to quantify the
spatia dependence in mortdity rates of the gall-forming aphids, Pemphigus populitransversus and
P. populicaulis. Setzer found significant autocorrelation among spatidly adjacent gdls, indicating a
clumped pattern of mortality which was attributed to the foraging habits of dipteran predators. On a
much larger scale, Liebhold and Elkinton (55) quantified spatid dependence in yearly maps of gypsy
moth defoliation in Massachusetts and found that spatia dependence generdly was high inrising
populations but was lower when outbreaks declined.

The existence of strong spatia dependence in insect data indicates thet there is value in estimating
counts a unsampled locations from values a nearby locations. There are many instancesin ecologica
research and pest management where it is necessary to interpolate among spatialy dtratified samples.
The current emphasis on area- wide pest management strategies often entails the use of spatialy
sratified samples to assess the need for treatment over large areas. The benefit of kriging in these
Stuationsis that these estimates provide the "best estimates’, and procedures are available for
generating confidence intervals of these estimates (43,44).

The gypsy moth, Lymantria dispar (L.), isan example of amagor pest where management
depends heavily on interpolating among spatidly dratified samples (74,76,27). Gypsy moth egg
masses are present from late summer through early spring of the following year. The avallability of egg
masses over such along interval makesthis life stage convenient for sampling. Most gypsy moth
management programs rely on estimates of egg mass dengties for evauating the necessity of
suppression in an area (74). Liebhold et d. (56) modeed semivariograms from gypsy moth egg mass
data from Massachusetts and used these models to generate maps of kriged estimates. They aso
used indicator kriging to generate maps of probabilities of exceeding athreshold density. Because
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pest management decisions are usudly triggered by exceeding some threshold dengty (70), maps of
outbresk probabilities from indicator kriging can be ussful for management decison making.

Rangeland grasshoppers provide another example of insects that are managed on an area-wide
bass and considerable effort isinvested in collecting census counts that are spatialy Stratified over
large geographicd aress. Higtoricaly, suppression programs have been large, often resulting in
thousands of hectares treated for grasshopper control. Johnson and Worobec (41) used an
inverse-distance weighted mean technique to estimate maps of grasshopper abundance in Alberta.
Kemp et d. (51) used ordinary kriging to estimate maps of grasshopper countsin Montana.
Presumably, kriged estimates result in alower estimation error than obtained using an inverse-distance
method, though results are often very smilar (36).

A problem with insect count data is that the random variables that these data represent typically
do not gpproximate a univariate norma didribution. This Stuation results in substantia biasin the use
of the kriging estimation variance as a measure of religbility or confidence in the kriged estimate (Eq.
10) (49). Itisbecause of this problem that methods other than the kriging estimation variance are
often more desirable for estimation of confidence intervals of estimates; these other methods include
the use of indicator kriging or conditiond smulation. Often researchers will perform a nonlinear
transform of the data (e.g. log(x), +/x) prior to kriging to make the data more univariate norma. An
example of this can be found in a sudy in which kriging was used to generate interpol ated maps of
pear thrips densitiesin Vermont (2). Inthisstudy, a ,/x [=3/8 transformation was used to correct the
highly skewed nature of the count digtribution. The kriged estimates that were presented usng a
smple back-transformation were biased. Any time anonlinear transform of the datais made, kriging
is performed, and then the results are smply inverse-transformed, the kriged estimates will be biased.
The only published, unbiased back-transformation is the logarithmic case (48).

Application of geogtatisticd toolsis not limited to counts of insect numbers, but so can be used
to quantify spatia variation in genotypic and phenotypic characteristics of populations. Severd studies
have used spatid autocorrelograms to quantify within-population spatid variation in insect genotypes
(92). Some of these studies have found population attributes that are spatiadly anisotropic and this has
been interpreted as evidence for clina variation (67, 92). A recent criticism of thiswork (86) argues
that sampling error, ochadtic variation, and parametric variation caused by differences among
processes governing alee frequencies may be the mgor sources of variation and will overwhem any
spatid differentiation within populations. Soka and Oden (91) defended the use of spatid
autocorrelation and argued that Slatkin and Arter's (86) conclusion resulted from limiting the vaues of
parametersin their smulations.

THE FUTURE

In many respects, GIS and geodtaigtics are technologically advanced, yet it islikely that these
technologies will evolve and mature considerably over the next decade. For example, geodtatistical
procedures have generally not been incorporated within currently available GIS software.
Furthermore, most GIS and geodtatigticd software is not easy to use; it islikely that more intuitive user
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interfaces will be developed in the future, thereby making these tools available to awider audience of
ecologigs.

The advent of GIS and geodtatistics has made analysis of complex spatia patterns an attainable
redlity for ecologists and it is therefore likely that these toolswill contribute to major developmentsin
applied insect ecology. However, these future developments may be limited by our current conceptua
ecologica framework, which until recently has not concentrated on processes operating through
space. Thistheoretica gap is embraced by the new field of "landscape ecology™” which emphasizes
large area phenomena and the effects of spatia patterning in the analysis of ecologica phenomena
(104,28). Despite the availability of tools such as GIS and geodtatigtics, the incorporation of space
into ecologicd theory, ecologica modes, and pest management practices will not happen overnight
because substantial developmental changes in both theory and practice must occur.
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Figure Captions
Figure 1. Methods used for representing spatial data. (A) Raster method. (B) Vector method.

Figure 2. A typicd Variogram.



