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Abstract. Exotic pests are serious threats to North American ecosystems; thus, eco-
nomic analysis of decisions about eradication, stopping, or slowing their spread may be
critical to ecosystem management. We present a model to analyze costs and benefits of
altering the spread rates of invading organisms. The target rate of population expansion
(which may be positive or negative) is considered as a control function, and the present
value of net benefits from managing population spread is the criterion that is maximized.
Two local maxima of the present value of net benefits are possible: one for eradication and
another for slowing the spread. If both maxima are present, their heights are compared,
and the strategy that corresponds to a higher value is selected. The optimal strategy changes
from eradication to slowing the spread to finally doing nothing, as the area occupied by
the species increases, the negative impact of the pest per unit area decreases, or the discount
rate increases. The model shows that slowing population spread is a viable strategy of pest
control even when a relatively small area remains uninfested. Stopping population spread
is not an optimal strategy unless natural barriers to population spread exist. The model is
applied to managing the spread of gypsy moth (Lymantria dispar) populations in the United

States.
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INTRODUCTION

Bioeconomics, a theory of optimal management of
renewable biological resources, has been largely ap-
plied in fisheries and aquaculture (Clark 1976, Allen
et al. 1984). Initial bioeconomic models in fisheries
were based on the concept of maximum sustainable
yield, which implies a stable equilibrium. However,
natural populations often have non-equilibria dynam-
ics. For example, local population dynamics may ex-
hibit complex patterns, such as limit cycles and chaos
(Turchin and Taylor 1992). Exotic species may expand
their range in space by forming nonstationary waves
(Skellam 1951). Economic assessment of these tran-
sition processes requires incorporation of discount (in-
flation) rates into cost—benefit analyses that can be ac-
complished using present values. The present value of
an activity equals the net expected revenues weighted
by the exponential function of the time at which these
revenues are obtained (Clark 1976):

T
f P(texp(—at) dt (D
0

where P(t) are net revenues at time ¢, « is the discount
rate, and 7 is the time horizon. The time horizon may
be infinite; in this case, a criterion of convergence is
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required. Revenues, P(f), can be both positive and neg-
ative. Typically, discount rates vary from 0.02 to 0.07
per year.

Bioeconomics has previously been applied to insect
pest management (Hall 1974, Stern 1975). However,
most bioeconomic models in pest management consid-
ered only short-term revenues. For example, the con-
cept of the economic injury level, which is the cor-
nerstone of integrated pest management (IPM), is usu-
ally applied to one growing season (Stern et al. 1959,
Pedigo 1985). In many agricultural programs, the time
span between investment in pest management and har-
vest of the crop is short, and there is no need to use
the concept of present value because inflation is neg-
ligible during this period. Thus, most optimization
models in pest management have concentrated on max-
imizing the difference between benefits and costs in
the same year (Goh 1980, Shoemaker and Onstad 1983,
Gutierrez and Wang 1984).

However, some pest management activities have
long-term consequences and, thus, the economic anal-
ysis should cover a longer period. For example, al-
though the suppression of forest pest insect populations
using chemical sprays may protect foliage in the year
of application, it may also increase the chances of out-
breaks in subsequent years (Isaev et al. 1984). Short-
term objectives, e.g., prevention of defoliation, might
not be optimal over an extended period. Another reason
for considering the economic effects of forest pest man-
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agement over a long term is that revenues are typically
delayed until the forest matures (Leuschner and Berck
1985). Long-term optimization may be necessary in
agricultural pest management if it has delayed effects
(e.g., increasing resistance to pesticides). For example,
Plant et al. (1985) found that optimal timing of sup-
pression of spider mites depended on a trade-off be-
tween gaining a high yield in the current harvest and
preventing the development of resistance to pesticides,
which would affect future yields.

The concept of present value has not been used for
optimization of pest management programs. Leuschner
et al. (1996) used discounting in evaluating potential
benefits from slowing the spread of gypsy moth, Ly-
mantria dispar (L.), populations in North America.
However, these authors did not use optimization. It is
clear that long-term pest management programs would
benefit from a broader adoption of bioeconomic con-
cepts, especially the concept of present value.

In this paper, we apply the concept of present value
to the problem of managing the spread of exotic pest
species using barrier zones. Exotic pests are serious
threats to North American ecosystems (Sailer 1983,
Liebhold et al. 1995). Because of increasing transpor-
tation activity, the risk of invasion by moving organ-
isms across natural geographic barriers is growing. For
a variety of reasons, introduced species are more likely
to be pests than are native species (Simberloff 1986).
The percentage of imported species is 39% among ag-
ricultural pest insects (Sailer 1983), and 27% among
forest pest insects (Pimentel 1986).

Traditionally, quarantine programs have been based
upon qualitative understanding of economic etfects,
and most decisions have been based on intuition. At-
tempts to apply economic analysis to quarantine mea-
sures have often failed because of insufficient infor-
mation and unjustified simplifications (Dahlsten et al.
1989, LeVeen 1989). For example, side effects of large-
scale pesticide treatments were ignored in cost—benefit
analyses of several eradication programs (Dahlsten et
al. 1989). Monitoring systems were often inefficient,
and the range of a species could have been underes-
timated. However, new technologies (efficient traps,
geographic information systems, etc.) provide tools for
effective economic analysis of quarantine activities. In-
formation on the ecological effects of many invading
pest species has substantially increased over the last
decade, making economic analyses possible.

When an exotic pest species becomes established,
various strategies can be used to change the rate of
expansion of the population range, including reduction
of the chances of accidental movement of organisms
to the uninfested area via domestic quarantine, detec-
tion and eradication of isolated colonies in the unin-
fested area, establishment of barrier zones designed for
slowing or stopping population spread, or eradication
of the entire pest population, if possible. Simultaneous
analysis of all of these options would lead to compli-

Ecological Applications
Vol. 8, No. 3

cated models that are difficult to analyze theoretically.
We believe that attempts to combine these options
should be preceded by studies of individual manage-
ment options. In this paper, we consider just one kind
of activity: barrier zones.

Any pest management activity performed in the area
adjacent to the population front and targeted at mod-
ification of the rate of population spread can be con-
sidered as a form of barrier zone management. Barrier
zones can be stationary or moving. For example, a
stationary barrier zone was established to prevent the
migration of the screwworm, Cochliomyia hominivorax
(Coquerel), from Mexico to the United States (Marsula
and Wissel 1994). Several barrier zones that were es-
tablished in 1992 to slow the spread of gypsy moth
populations in Virginia, West Virginia, and North Car-
olina will eventually move in the direction of popu-
lation spread (Leonard and Sharov 1995). A barrier
zone may also be shifted backwards in order to even-
tually eradicate the entire population. The boll weevil,
Anthonomus grandis Boheman, eradication program
(Coppedge 1996) can be considered as an example of
this type of effort.

The management of barrier zones evokes several
questions that are of great public concern. First, how
extensive must a population be before eradication is
no longer a viable approach? The decision is often
painful, because the inability to eradicate the pest is
considered as a failure. However, it may happen that
the present value of eradication is lower than the pres-
ent value of alternative strategies, such as slowing the
spread. Second, are efforts to slow population spread
economically viable? Slowing the rate at which pest
populations are spreading may not be considered ben-
eficial because the pest will eventually occupy its entire
potential range. This argument is based on the equi-
librium economics that ignores transition processes.
The concept of present value helps to justify the eco-
nomics of transition processes, such as slowing pop-
ulation spread. Third, the idea of stopping population
spread has been very attractive, but its economic via-
bility has never been thoroughly evaluated. Alternative
strategies (e.g., slowing the spread or gradual eradi-
cation) may have a greater present value than stopping
the spread.

We use the problem of gypsy moth spread in North
America as a case study. The gypsy moth is a good
species for this analysis because: (1) considerable re-
sources are currently being expended on slowing the
spread of the gypsy moth through North America, and
(2) historical data that describe its spread are probably
more extensive in both space and time than for any
other invading species.

GENERAL MODEL OF A BARRIER ZONE

Let us assume that a continuous area potentially can
be invaded by a pest species. The pest can be introduced
in the center of this area (Fig. 1A), at the edge (Fig.
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FiG. 1. Three types of pest introduction: (A)
in the center of potential species’ range: (B) at
the edge; and (C) in a linear area.

point

introduction population

front

1B), or at the end of the linear area (Fig. 1C). Here,
we do not consider species that live in highly isolated
habitats (e.g., rivers, lakes).

We further assume that the rate of uncontrolled
spread, v, is constant. In reality, v,, may vary in
time and space. For example, the rate of population
spread may increase with the time elapsed since initial
introduction (Hastings 1996, Shigesada et al. 1995).
Also, the rate of spread may depend on the physical
environment or landscape characteristics. However, for
theoretical purposes it is more convenient to assume a
constant v,,,.. Simplified theoretical models often can
be adjusted to fit specific conditions in real populations.
For example, if the rate of population spread in one
direction is different from the rate of spread in another
direction, these directions can be considered individ-
ually, and optimization may result in different man-
agement strategies in each direction.

Let us plot the length of the population front, L(x),
as a function of the distance from the introduction point
(Fig. 2). The shape of function L(x) depends on the
shape of the area that potentially can become infested
and on the location of the introduction point (Fig. 1).
If the invasion occurs in the center of the potential
range (Fig. 1A), then L(x) = 2mx for small values of
x. When the population front reaches the boundary of
the potential species’ range, however, the length of the
population front is no longer proportional to the dis-
tance from the introduction point. We assume that the
area has a simple shape (i.e., no deep bends or large
gaps), so that the direction of population expansion
remains the same. In practical situations, the current
population front of a species might be noncircular. Then
the distance, x, can be measured from the current front
line rather than from the introduction point.

We can simplify the problem by assuming that the

potential species’ range is represented by the area be-
tween the function, L(x), and the horizontal axis in Fig.
2. Then, the population front can be viewed as a vertical
line that moves from left to right. The length of this
line is equal to the length of the population front, L(x'),
at distance x'; the area to the left of this line, I’(‘)' L(x)
dx, is equal to the area occupied by the population when
the front is located at distance x’. In the same way, the
area to the right of the vertical line x = x’ is equal to
the area not occupied. Costs and benefits from man-
aging population spread depend on the length of the
population front and on areas that are occupied and
unoccupied. Thus, the model in Fig. 2 can be used to
estimate costs and benefits from managing the spread
of a population in all types of species introductions
(Fig. 1A-C).

The next step is to consider a barrier zone set along
the population front in order to modify the rate of
spread. The distance from the introduction point to the
population front, x(#), is a function of time since in-
troduction, . The rate of spread, v(f) = dx/dt, is the
derivative of function x(#). The cost of the barrier zone
per unit length along the population front, C(v), rep-
resents the minimum cost of maintaining the target rate
of population spread, v, which means that all activities
in the barrier zone are optimized. The function C(v) is
likely to decrease as the target rate of spread increases
(Fig. 3). If the target rate of spread is equal to the rate
of uncontrolled spread, there is no need for manage-
ment and the cost is zero: C(v,,,) = 0. The cost of
stopping population spread is equal to C(0). The cost
function is assumed to be concave (d*C/dv? = 0) be-
cause further reduction in the rate of population spread
is probably more expensive than the initial reduction
(Fig. 3). Among various kinds of activities that can
reduce the rate of spread, some are more efficient than

FiG. 2. The length of the population front
as a function of the distance from the introduc-
tion point.
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Cost, C(v)

Rate of spread, v

F1G. 3. Cost of the barrier zone per unit length for varying
target rates of population spread. The optimal target rate of
spread of the population expanding along an infinite strip is
equal to the point where the tangent of function C(v) is equal
to —D/a. Depending on the slope, the optimal strategy may
be no management (A), slowing the spread (B), or eradication
(C).

others. For a small reduction in the rate of spread, only
the most efficient kinds of activities are selected; for
a further reduction in the rate of spread, other less
efficient kinds of activity have to be added, dispro-
portionally increasing the cost of the entire project.
Optimization is possible even without the assumption
that the function C(v) is concave, but this assumption
simplifies the analysis considerably.

The rate of spread can be negative if pest manage-
ment in the barrier zone is so intensive that the pop-
ulation front moves back. This may eventually result
in eradication of the entire population. It seems likely
that costs of moving the population front back must be
greater than costs of slowing the spread.

The cost of the entire barrier zone at time 7 is
C(v(H))L(x(1)). The present value of total costs (TC) for
the entire project starting from current time, t,, equals

TC = j Cv(D)L(x(tYexp(—alt — ) dr  (2)

o

where a is the discount rate.

The cost of the barrier zone depends on pest control
tactics and can be estimated using optimization models.
For example, Marsula and Wissel (1994) analyzed the
effectiveness of a barrier zone that implemented sterile
male release against the screwworm. Sharov et al.
(1998) used a model to optimize the allocation of mon-
itoring and suppression efforts in order to slow the
spread of gypsy moths.

The benefits from reducing the rate of population
spread result from the delay in colonization of the un-
infested area compared to uncontrolled spread. These
benefits are counted from the time when the population
front would be expected to pass this area, in the case
of uncontrolled spread, to the time when the population
front actually passes. For example, at distance v, from

ALEXEI A. SHAROV AND ANDREW M. LIEBHOLD

Ecological Applications
Vol. 8, No. 3

Actual
Spread

Uncontrolled
Spread

x

3
%

X4

Xo

Distance from the introduction point, x

Time, t

F1G. 4. Dynamics of actual (managed) and uncontrolled
population spread. The shaded area is the spatiotemporal re-
gion where benefits from slowing population spread are
gained; x,,, is the most distant point in the uninfested area.

the introduction point, benefits from slowing the spread
start at time f, and end at time 7, (Fig. 4). The shaded
area in Fig. 4 shows the spatiotemporal region where
benefits from slowing population spread are gained.
Thus, the present value of total benefits from slowing
population spread is

TB =D jJ' L(x)exp[—a(t — t,)] dt dx 3

S
where D is the average damage caused by the pest per
unit area per unit time, and S is the shaded area in Fig.

4. It can be shown (Appendix A) that the integral (Eq.
3) is equal to

D Yanux
—{ f L(x)exp
@ ayi]

- J v(OL(x(D)expl—a(t — ty)] dt} )

_Ol(x = Xo)

dx

max

where x,,,, is the most distant point in the uninfested
area and x, = x(1,) is the starting location of the pop-
ulation front.

Combining costs and benefits (Eqs. 2 and 4), we get
the present value of total net benefits
alx — x4)

dx

D Ymax
TNB = — J' L(x)exp
o

0

X exp[—a(t — t(,)]} dt. (5)

max

gv(t) + COm| Ly

The function x(r) is considered as a control function,
and total net benefits, TNB, as an objective variable to
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be maximized. The first term in Eq. 5 does not depend
on function x(r). Thus, the optimal strategy can be
found by minimizing the second term of Eq. 5. This
minimum can be estimated using analytical or numer-
ical methods, depending on the complexity of functions
L(x) and C(v). Total net benefits (Eq. 5) may have sev-
eral local maxima. For example, there may be one max-
imum for pest eradication and a second maximum for
slowing or stopping population spread. In the case of
several maxima, it is necessary to select the highest
one, which corresponds to the optimal management
strategy.

SpeciAL CASES

In this section, we determine the best strategies for
managing the rate of population spread to maximize
the present value of total net benefits (Eq. 5) in three
special cases. First, we consider a population that ex-
pands its range along an infinite strip with a constant
width. We then consider population spread in a rect-
angular area with the population front parallel to the
side of the rectangle. Finally, we analyze the spread of
a recently established population with a circular range
that expands in all directions.

Population expansion along an infinite strip

The length of the population front, L, is a constant
because it is equal to the width of the strip. The optimal
rate of spread is also constant because all conditions
remain uniform as the population front progresses
along the strip. Then, the second term in Eq. 5 has a
minimum if the expression [Dv/ia + C(v)] is minimal,
ie., if

dc(v) D

& o ©
This means that the optimal target rate of spread, v,
corresponds to the point at which the tangent of func-
tion C(v) is equal to the slope, —D/a (Fig. 3). If the
slope is small (—D/a = dC(v,,)/dv), then v = v__.,
indicating that the best strategy is no management (Fig.
3A). If the slope is intermediate (dC(0)/dv < —Dfo <
dC(v,,)/dv), then 0 < v <, indicating that slowing
the spread is the optimal strategy (Fig. 3B). Finally, if
the slope is steep (—Dfa < dC(0)/dv), then v < 0,
indicating that the population front should be moved
back, i.e., eradicated (Fig. 3C). Because the cost func-
tion is assumed to be concave, its derivative, dC/dv,
increases with increasing v. Thus, the optimal rate of
spread, v, is increasing with decreasing damage, D,
caused by the pest, and increasing discount rate, o.

The present value of total net benefits (Eq. 5) ob-
tained from optimally managing population spread is

TNB = £ (D, - v) - aCO)] @

where v is the optimal rate of spread, which is the
solution of Eq. 6.
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Natural populations always have limits to their ex-
pansion, contrary to our assumption of infinite spread.
However, if the uninfested zone is long enough, then
Eq. 6 might yield a good approximation for the optimal
target rate of spread. For example, if the annual dis-
count rate is 0.05, then net benefits obtained after 60
yr would have a negligibly small contribution to the
present value (Eq. 1). Thus, it is unimportant whether
the population will reach the end of the uninfested area
after 60 yr.

Spread in a rectangular area

In this example, the population front moves from
one side of the rectangle to the opposite side, and its
progression is measured by distance x, which changes
from O to x,,,. The length of the population front, L(x),
remains constant (=L) in the interval 0 = x = x,,.

The optimal rate of managed population spread in
the rectangular area depends on the location of the
front, x, and can be estimated using the Euler equation
(Elsgolts 1962). Mathematical details can be found in
Appendix B, and here we will only summarize the re-
sults. There may be either one or two local maxima of
total net benefits at each location x that correspond
either to slowing of population spread (v > 0) or to
eradication (v < 0). These maxima correspond to two
lines in Fig. S: the upper line represents slowing the
spread and the lower line represents eradication. The
stationary rate of spread, v*, which is the solution of
Eq. 6, is the asymptote for one of these lines. These
lines are solutions of the differential equation B.4 in
Appendix B that correspond to specific boundary con-
ditions (Eqgs. B.6 and B.7). If Eq. B.7 has no solution
v < min(0, v*), eradication should be completed in one
step if it is attempted.

If the population front is currently located at distance
x,, then the optimal strategy of managing population
spread is determined as follows. If there is only one
local maximum of total net benefits at distance x, (one
line in Fig. 5), then this strategy is optimal. If two local
maxima exist at distance x, then it is necessary to
determine which of them is a global maximum that
yields highest total net benefits (estimated using Eq.
5). The management strategy that corresponds to the
global maximum is optimal. At distance x, from the
introduction point, total net benefits from eradication
and from slowing the spread are equal (Fig. 5). If the
population front has not reached distance x,, then erad-
ication is the optimal strategy because it corresponds
to the global maximum of total net benefits. However,
if the population front has already passed distance x,,
then slowing the spread is the optimal strategy.

As the population front progresses, the benefits from
eradication decrease faster than the benefits from slow-
ing the spread; thus, it becomes more likely that slow-
ing the spread will yield higher benefits than eradica-
tion. When the population front approaches the end of
the potential range, slowing the spread should be aban-
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FiG. 5. Optimal management of the rate of population

spread, v, in a rectangular area: v* is the solution of Eq. 6
Vmax 18 the rate of unmanaged spread, and Ax is the distance
defined by the boundary condition (Eq. B.6). Graphs (A) and
(B) correspond to v* > 0 and v* < 0, respectively. The global
maximum corresponds to a strategy that yields the highest
net benefits (benefits are not shown in this graph). The local
maximum corresponds to a strategy yielding net bencfits that
are higher than for any small variation of this strategy. but
the local maximum is lower than the global maximum.

doned because net benefits become zero. If manage-
ment costs are high relative to the damage caused by
the pest species, then slowing the spread is more likely
to be the optimal strategy than eradication, except at
the initial stages of invasion (Fig. 5A). If management
costs are low and damage is high, however, then erad-
ication may be optimal even if the population has oc-
cupied most of its potential range (Fig. 5B) or even
the entire range. Stopping the spread is never an op-
timal strategy. It may yield positive total net benefits,
but these benefits are always smaller than the benefits
obtained from either eradicating or slowing the spread
of the population.

Spread of small populations

The major limitation of the previous special case is
that we did not consider the increase in length of the
population front during the initial period of introduc-
tion. Thus, it cannot be used for optimizing the erad-
ication of small initial colonies. In order to optimize
the management of small colonies, we will assume that
the population was introduced in the center of the po-
tential species range. (Fig. 1A). Thus, the length of the
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population front increases linearly with increasing dis-
tance from the introduction point,

L(x) = 2mx. (8)

To find optimal strategies of eradicating or slowing
the spread, it is again possible to use the Euler equation.
However, the analysis becomes even more complicated
than in the previous special case, and requires several
simplifying assumptions. First, we assume that eradi-
cation is always done in one step, which is reasonable
for small colonies, and that eradication costs are pro-
portional to the area of the colony. Second, if the option
of slowing the spread is selected, we assume that the
target rate of spread, v, is equal to the stationary rate
of spread, v*, which is the solution of Eq. 6. This rate
is usually close enough to the optimal rate, except when
the radius of the colony is either very small or so large
that the population occupies nearly the entire potential
range. Thus, net benefits from keeping the rate of
spread v = v* are close to net benefits from the opti-
mized strategy of slowing the spread.

Now we can compare total net benefits from eradi-
cation vs. slowing the spread. The strategy that yields
higher total net benefits should be recommended. The
present value of total net benefits obtained from erad-
ication is estimated assuming that all costs are paid at
present time:

2nDF (X, Vi)

o’

TNBp(x) = - mxE 9
where x is the initial radius of the infestation; E is the
cost of eradication per square kilometer; and v, is the
rate of uncontrolled spread. The first term in Eq. 9
represents benefits (Eq. 3) and the second term rep-
resent costs (Eq. 2). The function F in Eq. 9 is

F(x, v) = v + avx + 0.5(ax)? — vG(x, v) (10)
and the function G is
G(x, v) = (v + axpexpl—alxy,, — 0/v] (11)

where x,,, is the radius of the potential species range.
Total net benefits associated with slowing the spread
are equal to

2nD[F(x, V) — F(x,v))

3

TNB,(x) =

a

- w[G(x, v) + ax +v]  (12)
where v = v* is the solution of Eq. 6, and functions F
and G are specified by Eqs. 10-11. The first term in
Eq. 12 represents benefits (Eq. 3) and the second term
represents costs (Eq. 2).

The values of total net benefits obtained from erad-
ication (Eq. 9) and slowing the spread (Eq. 12) can be
compared for varying radii, x, of the initial infestation.
The largest population that could be eradicated has the
radius, x, at which total net benefits from eradication
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Population front

FIG. 6. Percentage of the land area in which >50% of the basal area is of tree species preferred by the gypsy moth
(modified from Liebhold et al. 1997). and the front of gypsy moth populations in 1995.

and slowing the spread are the same: TNB(x) =
TNBs(x).

CASE STUDY: MANAGING GYPSY MOTH SPREAD IN
NORTH AMERICA

The gypsy moth, Lymantria dispar, was accidentally
introduced to North America near Boston in 1869 and
has been slowly expanding its range since then (Lieb-
hold et al. 1989). McFadden and McManus (1991) and
Liebhold et al. (1992) suggested that transportation of
gypsy moth egg masses and other life stages by humans
is probably the most important dispersal mechanism
that leads to the expansion of its range.

The rate of spread was relatively high (9.45 km/yr)
from 1900 to 1915, then very low (2.82 km/yr) from
1916 to 1965, and increased to 20.78 km/yr from 1966
to 1990 in counties where the mean minimum January
temperature was >—13.9°C (>7°F; corrected from
Liebhold et al. 1992). Low spread rates in 1916-1965
may have resulted from several attempts to stop the
spread of gypsy moths using barrier zones. The most
important of these was a barrier zone established in
1923 from Canada to Long Island along the Hudson
River Valley (McFadden and McManus 1991), which
was used until 1941, when the area finally became in-
fested.

Currently, the U.S. Department of Agriculture Forest
Service is conducting the Slow-the-Spread (STS) pilot
project to evaluate the feasibility of slowing the gypsy
moth spread in specific portions of North Carolina,
Virginia, West Virginia, and Michigan (McFadden and
McManus 1991, Leonard and Sharov 1995, Leuschner
et al. 1996). In project areas, thousands of pheromone-

baited traps (Schwalbe 1981) are placed annually in 2-
km and 0.5-km grids to detect and delineate isolated
colonies located immediately beyond the expanding
population front. Subsequent eradication (or suppres-
sion) of these colonies appears to have resulted in a
decrease in the rate of population spread (Sharov et al.
1996). Sharov and Liebhold (1998a) developed a me-
tapopulation model of species range expansion that pre-
dicted that the project would result in a 54.3% decrease
in the rate of gyspy moth spread. The actual reduction
in the rate of spread in the Appalachian Mountains was
59%, which is close to predicted value.

Liebhold et al. (1997) plotted a map of host plant
availability for the gypsy moth (Fig. 6), indicating that
the gypsy moth occupies about one-third of its potential
range at the present time. The area that can potentially
support gypsy moth populations is distinctly subdivid-
ed into two portions: the northern region (Michigan,
Wisconsin, and Minnesota) and the southern region (to
the south from Iowa, Illinois, and Indiana). The gypsy
moth will probably spread independently in these two
regions. In this analysis, we consider only the southern
region, because most activities in the STS project were
performed in this area. We assume that the length of
the population front L is 1000 km, which is the ap-
proximate distance from Lake Erie to the ocean shore
between North Carolina and South Carolina. The gypsy
moth has already spread ~1000 km from the point of
introduction (Boston, Massachusetts), and the depth of
the potential range that remains uninfested is ~1500
km (Fig. 6). Thus, x,,, = 2500 km. The rate of un-
controlled spread, v,,,, is 21 km/yr (Liebhold et al.
1992).
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Row et al. (1981) recommended using a discount
rate of 0.04/yr. However, it may be necessary to in-
crease the discount rate because of the uncertainty in
model parameters. The error in model predictions tends
to increase with time. If the discount rate is small, the
present value of total benefits, TNB, is sensitive to
benefits in the far future, which are predicted with sub-
stantial error. As a result, the error of the TNB value
becomes large, and decisions based on the model may
have a high risk. Thus, we will use two discount rate
values: @ = 0.04 and a = 0.1. The second value is
more conservative, because the risks associated with
uncertainty of predictions are smaller. The higher dis-
count rate (a = 0.1) is one at which decisions are based
on short-term economics.

Sharov et al. (1998) used a model to estimate the
costs of slowing the spread of gypsy moth populations
in the central Appalachian Mountains. This model gen-
erated values of the function C(v) forv = 5,9, 13, and
17 km/yr. The model of Sharov et al. (1998) is not
appropriate for negative and small positive target
spread rates (e.g., <5 km/yr). It considers detection
and eradication of isolated colonies only: if the target
spread rate is <5 km/yr, it may be necessary to treat
large areas of continuously distributed gypsy moth pop-
ulations.

The cost of management of a barrier zone with neg-
ative and small positive target rates can be evaluated
using the following assumptions. The model of Sharov
and Colbert (1996) predicts that eradication of a gypsy
moth population with initial density of 10° eggs/ha
(~200 egg masses/ha) requires 4 yr of treatment, as-
suming no density dependence in gypsy moth mortality
at low densities. Defoliating populations (>30% de-
foliation) are characterized by a density of >4 X 10°
eggs/ha (Liebhold et al. 1993); therefore, =1 yr more
is necessary to reduce the density to 10° eggs/ha. Thus,
we can take 5 yr as the period required for eradicating
high-density populations.

Chemical and even bacterial pesticides cannot be
used over large, continuous areas (~107 ha) because
of possible adverse effects on nontarget organisms.
Only species-specific treatments, such as viruses (nu-
clear polyhedrosis virus, NPV), pheromones, or sterile
insect releases, can be applied. Average treatment costs
in the STS project in 1994-1995 were $25 per acre, or
per 0.4 ha (J. Mayo, Clemson University, South Car-
olina, personal communication). Then, the approximate
cost of 5 years of treatments is $31 000/km?. 1.iebhold
et al. (1992) predicted, using the model of Skellam
(1951), that the range of the gypsy moth would expand
by 2.5 km/yr due to larval dispersal, even if there were
no long-distance transportation of its egg masses and
other life stages. We assume that the population spreads
forward by 3 km/yr even if all isolated colonies are
eradicated. Thus, the cost of 1 km length of the barrier
zone would be

ALEXEI A. SHAROV AND ANDREW M. LIEBHOLD

Ecological Applications

Vol. 8. No. 3

€
< 300
14
©
S 250+
°
:?_, 200
g
S 150
N
2 100 |
g
® 50
£
n5 0 L 1 : L
% -5 0 5 10 15 20
o
O Target rate of spread, v (km/yr)

FiG. 7. Expected cost of the barrier zone per 1 km length

for various target rates of gypsy moth spread. The line is
fitted from Eq. 14; & represents the model of Sharov et al.
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C = c(3 — V) + ¢ (13)

where ¢, = $31000 (eradication costs per square ki-
lometer) in the generally infested area, and c, are ex-
pected costs of eradicating isolated colonies per 1 km
length of the population front. According to Eq. 13,
C(3) = ¢,. The model of Sharov et al. (1998) predicted
that C(5) = $14 880/km of the population front. Be-
cause C(3) > C(5) (note that C(v) is a decreasing func-
tion), we expect that the value of C(3) and, hence, c,,
is ~$20000. For convenience, we used a smooth cost
function that approximated both the cost of slowing the
spread and hypothetical costs of eradication (Fig. 7):

Cwv)y=by,+ by + b,VV2+ by + b, (14)

where parameters b, = 64 150; b, = —16040; b, =
15200; b, = —6.15; and b, = 10 were found by least
square fitting.

Annual damages caused by gypsy moth populations
per unit area, D, can be estimated using the economic
model of Leuschner et al. (1996). According to these
authors, the present value of negative impacts of gypsy
moth spread over the next 25 yr in the United States,
excluding Michigan and Wisconsin, is $3798.9 million
(assuming the rate of spread of 20.1 km/yr). Thus,

25
> DLvt exp(—af) = 3798.9 X 106.

=0

(15)

Solving this equation with L = 1000 and a = 0.04, we
get D = $1120 per square kilometer per year. We be-
lieve that the value of negative impacts caused by the
gypsy moth was overestimated by Leuschner et al.
(1996), because they assumed that residential impacts,
which are ~83% of the total impacts, occur every year
in the entire area. In reality, residential impacts occur
only in areas defoliated by the gypsy moth. In the gen-
erally infested zone in Virginia and West Virginia, the
percentage of area defoliated in 1990-1994 varied from
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rate.

18% to 34%, being 21% on average (A. A. Sharov and
A. M. Liebhold, unpublished data). Thus, we assume
that residential impacts were one-fifth those estimated
by Leuschner et al. (1996). This results in a damage
estimate of D = $380-km~2.yr~'.

According to Eq. B.6 in Appendix B, slowing the
rate of gypsy moth spread is economically beneficial
up to 49 km from the end of the potential species range
for a = 0.04 and 53 km for a = 0.1. The optimal target
rate of slowing gypsy moth spread remains almost con-
stant and close to the stationary rate of spread, v*, until
the distance from the population front to the end of the
uninfested area (x = 2500 km) becomes <200 km (Fig.
8A). This stationary rate of spread, which is the so-
lution of Eq. 6, equals 3.43 km/yr for « = 0.04 and
4.08 km/yr for a = 0.1. .

In the Appalachian Mountains, the STS project has
resulted in a reduction in the rate of gypsy moth spread
from 21 km/yr to 8.6 km/yr (Sharov and liebhold
1998b). According to the model, the optimal target rate
of spread is <8.6 km/yr (Fig. 8A). Let us compare
benefits from a suboptimal strategy used in the STS
program, assuming that it would continue until the en-
tire potential range is occupied, with potential benefits
from using the optimal target rate of spread shown in
Fig. 8A. If v = 8.6 km/yr, then the expected present
value of total net benefits would be $2 387 000/km for
o = 0.04 and $361000/km for « = 0.1. The present

value of total net benefits from using the optimal target
rate of spread is $3 340 000/km of the population front
for a = 0.04, or $461 000/km for « = 0.1 (Fig. 8B; x
= 1000 km). Thus, the model predicts that additional
value of 28-40% can be obtained from further reduc-
tion of gypsy moth spread by increased management
activity in the barrier zone.

Equation B.7 in Appendix B has no solution, indi-
cating that eradication of the gypsy moth population
in one step is more beneficial than the gradual backward
movement of the barrier zone. Benefits from eradica-
tion are greater than benefits from slowing the spread
only at the initial stages of invasion, when the popu-
lation front has extended by <62 km for & = 0.04 and
<16 km for @ = 0.1 (Fig. 8B).

The model of spread of small populations (case 3)
gives more accurate estimates of the size of colonies
that can be eradicated. We assumed that a small colony
became established in the center of the potential range.
All parameter values are the same as those previously
used, except x,,,, = 1250 km (half of the size of the
uninfested area), because a colony expands from the
center rather than moving from one side of the area to
another. As a result, the population front extends only
by half of the distance to reach the end of the uninfested
area (for simplicity, we ignored the expansion of the
generally infested area). The cost of eradication is E
= $31 000/km".
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According to the model, one-step eradication of a
small gypsy moth colony yields slightly higher total
net benefits (Eq. 12) than does slowing the population
spread (Eq. 9) when the size of the colony is small: x
< 195 km for a = 0.04, and x < 45 km for a = 0.1
(Fig. 9). Thus, the maximum radius of a colony that it
would beneficial to eradicate was estimated as 45-195
km, depending on the discount rate. For larger colonies,
the model recommends slowing the spread as a man-
agement strategy.

Results obtained in this section should be considered
preliminary because of uncertainty in several model
parameters. Estimates of damages caused by the gypsy
moth and the cost of the barrier zone at target spread
rates of <5 km/yr are the least certain.

DISCUSSION

This study demonstrates the value of bioeconomic
analysis in planning programs that implement barrier
zones for managing the spread of pest species. A barrier
zone is a tool for total population management (TPM),
as advocated by Knipling (1966). The target of the TPM
is the entire population, whereas IPM is usually tar-
geted at local populations. The term TPM has not been
widely used, because Knipling (1966) overemphasized
eradication as the major goal. Now the terin *‘area-
wide pest management’” (Klassen 1996) essentially ex-
presses the same idea, except that it does not consider
eradication as a panacea.

Our model specifies optimal strategies for population
containment and eradication. This analysis helps to
avoid suboptimal decisions based on intuition. For ex-
ample, Dahlsten et al. (1989: 11) stated that ‘‘insects
that have already colonized parts of the United States,
or any large land mass or continent, probably should
not be the targets for eradication programs in other
sections of the country because of their potential for
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recolonization.”” Our analysis clearly demonstrates that
this statement is wrong. Eradication of small, isolated
colonies of the gypsy moth within barrier zones is not
only feasible, but also economically justified because
the model predicts positive net benefits under realistic
assumptions.

The model shows that eradication can be success-
fully implemented mainly against a recently estab-
lished species whose range is limited. Only in rare
cases, such as that of the screwworm, is eradication so
inexpensive and environmentally safe that it can be
applied to large populations. Of course, as species-
specific pest control agents become less expensive,
greater numbers of species can be successfully eradi-
cated over large areas. The economics of many erad-
ication programs were never thoroughly evaluated. For
example, the boll weevil eradication project has con-
tinued since 1977 (Coppedge 1996), but only partial
success has been achieved. If chemical pesticides are
used in eradication programs, it is necessary to account
for side effects on nontarget species. For example, in-
tensive pesticide treatments against the boll weevil in
Texas suppressed natural enemies and, as a result, se-
rious outbreaks of secondary pests occurred (Coppedge
1996).

Slowing population spread is a relatively new tool
in pest management. It was not seriously considered
before, because of the emphasis on eradication or stop-
ping the spread of exotic pests. Our model demon-
strates that considerable benefits from slowing popu-
lation spread may exist even if only a small portion of
potential range remains uninfested. In the case of the
gypsy moth, the reduction of the spread rate is achieved
by eradicating small, isolated colonies beyond the ex-
panding population front. Because these colonies are
usually small, treatment can be confined to small patch-
es; thus, the program has a very limited impact on
nontarget organisms.

An unexpected result of our analysis is that stopping
population spread in a rectangular area is not an optimal
strategy. Stopping the spread may be optimal only if a
natural barrier exists that creates a “‘bottleneck’ in the
middle of function L(x) (as in Fig. 2), because the cost
of the barrier zone can decrease substantially if it co-
incides with the natural barrier.

Our model can be a prototype for more detailed,
specific models to be used as guides for management
of particular pest populations. In these specific models,
the function L(x) may have a more complicated shape
than in the theoretical cases we have discussed, and
model parameters (e.g., the maximal rate of spread and
management costs) may depend on local conditions,
such as terrain, vegetation, and climate. Numerical op-
timization (e.g., dynamic programming) may be a bet-
ter optimization tool for these models than is the Euler
equation (Elsgolts 1962; Appendix B).

Control of natural resources may depend consider-
ably on social factors; thus, the model presented in this
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paper cannot automatically generate decisions. Rather,
it provides information on the economic viability of
barrier zone projects that may affect decisions in a
political arena (LeVeen 1989). Large-scale pest man-
agement projects are usually expensive and, thus, are
affected by budget constraints. For example, it may be
optimal, in theory, to eradicate the pest population in
one step, but this may require more funds than are
available. Shifting funds from other programs may
cause more damage to these programs than potential
gains from the eradication program. The compromise
may be reached by extending the eradication project
over a longer period. Our bioeconomic model can be
used to estimate the difference in total net benefits be-
tween the optimal and suboptimal strategy. Then, a
decision can be made if the program is still viable under
current financial constraints. Even if the program is
already in an operational stage, it still can be affected
by unforeseen social or environmental factors. If a
more serious pest species becomes established in the
country, then it may be necessary to move a portion
of funds to manage this new species.
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APPENDIX A
PrROOF OF EQ. 4

Let us consider the integral

k3 x(1)
J U Lix)exp(—alt — to)) dx| dt

where x(1) is a monotonic function, x(15) = x,, and L(x) is a
non-negative function. The integral (A.1) can be simplified:

uxy x vix) L X
J- L(x) J' exp(—a(t — ty)) dl] dx = f ﬂv'“"-" dx
n . a

tx) “
(A2)

where #(x) is the inverse of function x(r). After substituting
the variable x by 1, we get

(A.D)

* L
J' —Mexp(*a(t =t (1) dr
. [

The integral in Eq. 3 taken over the shaded area in Fig. 4
can be considered as a difference of two integrals of form
(A.1): the first for the uncontrolled spread x(#) = min(x, +
Vs Xmax): and the second for the actual spread x(z). The first
integral can be simplified by substituting the variable t by
variable x:

* L(min(x, + Voo X,
J' (min(xy + v, xmdx))hxp(iu(t_to))\ymdl

«
o

dx (A4)

v

max

J""“‘ L(x) i alx — xy)
= exp| - ——
. o

(A3)
o The difference between integrals (A.4) and (A.3), multiplied
where v(1) = x'(1). by the average damage per unit area, D, gives Eq. 4.
APPENDIX B

OPTIMAL MANAGEMENT OF POPULATION SPREAD IN A RECTANGULAR AREA

We assume that at current time, f,, the population front is
located at a point x, (0 < x4 < x,,,). The optimal function
x(7) can be either monotonically increasing or monotonically
decreasing, because for each location x, there is only one
direction in which it is optimal to move the population front.
The interval of integration in the second term of Eq. 4 can
be taken from ¢, to t,,. where ¢ ., is defined either by x(z,,,,)
= Xpax (if v(1) > 0), or by x(1,,,) = 0 (if v(r) < 0). In the time
interval from #, to f,,. the length of the population front,
L(x(¢)), is constant. Thus. the second term in Eq. 5 has a
minimum if and only if the integral

j ma | DX’ (1)

— + C(x'(1)
a
has a minimum. The optimal function x(t) can be found using
the Euler equation (Elsgolts 1962):

dfoF\ _oF
dr\ax’ ax

where x’ = v = dx/dt and

exp[—a(t — ty)] di (B.1)

(B.2)

’

Dx .
F(t, x, x') = [— + C(x")|expl—alt — t)]. (B.3)
o

The Euler equation yields the following differential equa-
tion, which can be used for estimating the optimal target rate
of population spread:

2 L
vi=1{D+ a£ 4C
dv )\ dv?

where v/ = dv/dt = d’x/dr* is acceleration of spread.

The stationary rate of spread. v*, can be found from Eq.
B.4 by setting v = 0. Then, D + a[dC(v*)/dv] = 0. which
is equivalent to Eq. 6. Thus, the stationary rate of spread is
equal to the optimal target rate of spread in the infinitely long
strip.

The stationary rate of spread, v*, is unstable in Eq. B.4
because a small increase in the rate of spread causes the
increase of dC/dv (the cost function, C(v), is concave), and
the acceleration, v', becomes positive. Thus, possible solu-
tions of Eq. B.4 are lines that deviate up and down from the

(B.4)
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FiG. Bl. Solutions of Eq. B.4: (A) rate of
spread. v, plotted against time, r (the upper J
branch of the solution is limited by the rate of X -
uncontrolled spread, v,,,): (B) the location, x,
of the population front plotted against time: (C) L
the rate of spread plotted against the location
of the population front.
B / —
; {\r’ . . Maximum total
e ‘ net benefits
Minimum total

net benefits

stationary rate of spread, v* (Fig. B1A). The portion of these
functions with values min(0, v*) < v < max(0, v¥) correspond
to the minimum of total net benefits: thus. they do not rep-
resent optimal rates of spread. The portions of lines with
values v < min(0, v*) and v > max(0, v*) correspond to local
maxima of total net benefits; thus. they may represent optimal
spread rates. The position of the population front (Fig. B1B)
is estimated as the integral of the rate of spread (Fig. B1A).
Finally. the rate of spread is expressed as a function of the
position of the population front (Fig. B1C).

We do not consider rates of spread that exceed the uncon-
trolled rate, v,,,. because then benefits become negative.
Thus, when the optimal rate of spread reaches the uncon-
trolled rate (v = v,,). management terminates and the pop-
ulation continues cxpanding its range with the rate of v,,,.

To find particular solutions of Eq. B.4, we used two bound-
ary conditions: one for slowing population spread and another
for eradication. Both boundary conditions describe the situ-
ation at the moment when pest management is used for the
last time. This is either abandoning of slowing the spread
when the population front comes too close to the end of the
area that potentially can become infested. or completing the
eradication program.

The boundary condition for slowing the spread is derived
as follows. Let us assume that the distance to the end of the
area is Ax, and the rate of spread is v (v = v_,,) for a short
time, At, which is much smaller than the time left until the
population reaches the end of the area (Ax/v,,). After time
Az, population spread is not managed (v = v,,,). The present
value of total net benefits (Eq. 5) is approximatcly equal to

DL

TNB = — (v, — W1 — exp(l — adx/v,)]Ar — LC(WAr
a

(B.5)

where the first term represents benefits and the second term
represents costs. Slowing the population spread is terminated
when the derivative dTNB/dv = 0 at v = v,,.. Applying this
condition to Eq. B.5, we get

D Ax
—C' (Vo) = —|1 — exp{ —a—]||. (B.6)
a ‘.max

The boundary condition for slowing the population spread is
the following: management of the rate of spread terminates
when the distance to the end of the area is equal o Ax (Eq.
B.6).

Now we will derive the boundary condition for eradication.
Let us assume that the population has been reduced to such
a small size that we can ignore the damage component of
total net benefits and assume a constant (negative) rate of
spread. Time left until complete eradication is proportional
to {— 1/v). Thus, total costs are proportional to { —C(v)/v]. The
optimal rate of spread corresponds to a minimum of this ex-
pression. which can be found by setting the derivative equal
to zero:

dC
v— — C(v) = 0.

B.7
v (B.7)

The optimal rate of spread, v, at the end of eradication (x
= 0) is the solution of Eq. B.7. This is the boundary condition
for eradication. If Eq. B.7 has no solutions for v < min(0,
v¥), then eradication should be completed in one step.



